Ответы на задания №1–45:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
δ												X		X									X		
Ъ	X	X	X							X										X				X	
გ							X	X					X			X			X		X	X			
g				X													X								
ล					Х	Х			Х		X				X			X							Х

	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
δ		X	X	X		X												X	X	
Ъ									X		X						X			
δ												X				X				
Q	X				X		X	X		X				X						X
J													X		X					

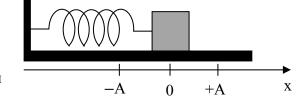
Схема оценок заданий №1–45:

Верный ответ каждого задания оценивается в 1 очко, неверный ответ — в 0 очков.

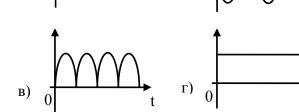
46. Установите соответствие между перечисленными физическими величинами и физическими единицами, и заполните таблицу.

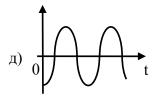
Обозначения: Дж — Джоуль, К — Кельвин, кг — килограмм, BT - Batt, л — литр.

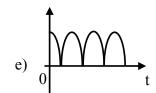
- 1. Температура
- 2. Количество теплоты
- 3. Удельная теплоемкость
- 4. Теплоемкость тела
- 5. Удельная теплота плавления
- 6. Удельная теплота парообразования
- 7. Внутренняя энергия


- а. Дж/К
- б. Дж/кг
- В. Л
- г. К
- д. Дж
- е. Дж/кг·К
- ж. Вт

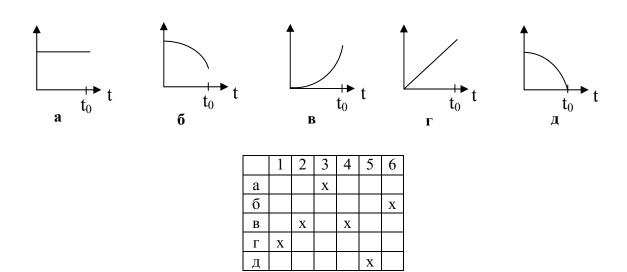
	1	2	3	4	5	6	7
a				X			
а б					X	X	
В							
Γ	X						
Д		X					X
e			X				
Ж							


Полученная оценка равна количеству правильно заполненных столбцов минус один (Макс. 6 очков)


47. Прикрепленное к пружине тело колеблется на горизонтальной поверхности. Координата серединной точки тела в положении равновесия равна нулю (см. рис.). В


начальный момент времени координата серединной точки тела равна (+A). Пренебрегите силами трения. Установите соответствие между перечисленными физическими величинами и качественными графиками их зависимости от времени t и заполните таблицу.

- 1. Проекция скорости на ось x
- 2. Проекция ускорения на ось х
- 3. Потенциальная энергия пружины
- 4. Кинетическая энергия тела
- 5. Полная механическая энергия
- 6. Период колебаний



	1	2	3	4	5	6
a						
а б	X					
В				X		
Γ					X	X
Д		X				
д e			X			

Полученная оценка равна количеству правильно заполненных столбцов минус один (Макс. 5 очков)

- **48.** Тело начинает скользить с вершины негладкой наклонной плоскости и в момент времени t_0 достигает горизонтальной поверхности, принимаемой за нулевой уровень. Установите соответствие между перечисленными физическими величинами и графиками их зависимости от времени t.
- 1. Скорость
- 2. Пройденный путь
- 3. Ускорение
- 4. Кинетическая энергия

- 5. Потенциальная энергия
- 6. Полная механическая энергия

Полученная оценка равна количеству правильно заполненных столбцов минус один (Макс. 5 очков)

- **49.** (Макс. 5 очков) Движущаяся в горизонтальном направлении со скоростью v пуля массы m попала в висящую на вертикальной невесомой нити длины L маленькую коробку массы M, пробила ее и вышла c другой стороны со скоростью 2v/3.
- 1. Определите приобретенную коробкой скорость.
- 2. Определите, на сколько поднимется центр тяжести коробки.
- 3. Определите, какая часть механической энергии пули преобразуется в тепло при пробивании коробки.
- 4. Определите силу натяжения нити непосредственно после того, как пуля пробила коробку, пока нить еще вертикальна.

Решение

1.
$$mv = m\frac{2v}{3} + Mu \Rightarrow u = \frac{mv}{3M}$$
 (1 очко)

2.
$$\frac{Mu^2}{2} = Mgh \implies h = \frac{u^2}{2g} = \frac{m^2v^2}{18M^2g}$$
 (1 очко)

3.
$$Q = \frac{mv^2}{2} - \frac{m(\frac{2v}{3})^2}{2} - \frac{Mu^2}{2} = \frac{mv^2(5M-m)}{18M}$$
 (1 очко)

$$\frac{Q}{E} = \frac{5M - m}{9M} \tag{1 очко}$$

4.
$$T - Mg = Ma$$
, $a = \frac{u^2}{L} \implies T = M(g + \frac{u^2}{L})$ (1 очко)

- **50.** (Макс. **4** очков) Два точечных заряда, 4q и (-q), находятся на расстоянии R друг от друга.
- 1. На каком расстоянии от меньшего заряда равно нулю напряженность электрического поля?
- 2. На проходящей через заряды прямой, на каком расстоянии от меньшего заряда равен нулю потенциал электрического поля?
- 3. Какую работу нужно совершить, чтобы увеличить расстояние между зарядами в два раза?

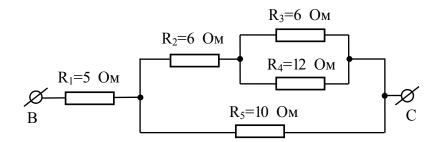
Решение

1. Напряженности созданных зарядами полей должны быть равны по модулю и противоположны по направлению. Такую точку нужно искать на продолжении соединяющего заряды отрезка, в сторону меньшего по модулю заряда.

$$k\frac{4q}{(R+x)^2} = k\frac{q}{x^2} \implies x = R \tag{1 очко}$$

2. На прямой, проходящей через заряды, потенциал поля будет равным нулю в двух точках: на соединяющем заряды отрезке и на продолжении этого отрезка в сторону меньшего по модулю заряда.

Для первой из этих точек имеем:


$$k\frac{4q}{R-x} + k\frac{(-q)}{x} = 0 \implies x = \frac{R}{5}$$
 (1 очко)

Для второй точки имеем:

$$k \frac{4q}{R+x} + k \frac{(-q)}{x} = 0 \implies x = \frac{R}{3}$$
 (1 очко)

3.
$$A = k \frac{4q \cdot (-q)}{2R} - k \frac{4q \cdot (-q)}{R} = 2k \frac{q^2}{R}$$
 (1 очко)

51. (Макс. 5 очков) Напряжение между зажимами В и С в представленной на рисунке схеме равно 60 В.

- 1. Определите полное сопротивление данной цепи.
- 2. Определите напряжение на сопротивлении R₂.
- 3. Определите выделяемую на сопротивлении R_5 мощность.
- 4. Определите силу тока, проходящего через сопротивление R₄.

Решение

1.
$$R' = \frac{R_3 R_4}{R_3 + R_4} = 4 \text{ Om, } R'' = R_2 + R' = 10 \text{ Om, } R''' = \frac{10 \text{ mHo}}{2} = 5 \text{ Om,}$$

 $R = R_1 + R''' = 10 \text{ Ом}$

(последовательное соединение - 1 очко, паралельное соединение - 1 очко)

- 2. Полная сила тока I=U/R=6 A, $I_2=I/2=3$ A, $U_2=I_2R_2=18$ B. (1 очко)
- 3. $I_5 = I/2 = 3 \text{ A}, P_5 = I_5^2 R_5 = 90 \text{ Bt}$ (1 очко)
- 4. $\frac{I_3}{I_4} = \frac{R_4}{R_3} = 2$, $I_3 + I_4 = I_2 = 3 \text{ A}$ \Rightarrow $I_4 = 1 \text{ A}$ (1 очко)